Laboratory Data Collection
with an IBM PC

A versatile hardware/software combination

You have a new IBM Personal Com-
puter (PC) and you want to use it in
the laboratory to collect data from a
scientific instrument. How do you do
that with a small investment of time
on your part and still get a product
that is a powerful, useful tool in the
laboratory?

I faced that same problem almost
two years ago when our chemistry
department received its first IBM PC,
and I wanted to interface it to a vari-
ety of chemical laboratory instru-
ments. We had only one of each type
of instrument, so I was faced with the
possibility of designing a custom in-
terface for each of 10 or more
instruments.

Fortunately, I had interfaced single
instruments to a DEC LSI 11/23 and
to an Apple, so [knew from my own
previous mistakes that a little ad-
vanced planning would make this a

much simpler project. Specifically, I

realized that interfacing can be made
much easier by using two simple con-
cepts: first, buy commercially avail-
able hardware where possible, and,
second, develop general-purpose
software that can be used for almost
any instrument.

By utilizing these two concepts, 1
found that even undergraduate chem-

366 BYTE May 1984

Stephen C. Gates
Illinois State University

istry students with little previous
computer experience can produce
research-quality interfaces, with com-
piete software, in less than one week.
If you follow the suggestions pro-
vided here, you should be able to
design and implement an interface to
the instrument of your choice in less
time. All you need to do is be able to
program in BASIC, FORTRAN, or
some other language that allows the
use of assembly-language subrou-
tines.

The essential elements of this sys-
tem are a commercially available
data-collection board that fits in one

" of the slots of the IBM PC, a pre-

amplifier and filter for conditioning
the signal from the instrument, and
a set of BASIC and assembly-lan-
guage routines to perform tasks com-
mon to all of the instruments to be
interfaced.

The utility of this approach arose
fairly naturally from some initial
design decisions. My major criteria
for selection of equipment and soft-
ware were ease of development and
ease of use. Therefore, 1 judged it to
be not cost-effective to spend time de-
veloping special-purpose A/D
(analog-to-digital) converters, timers,
or other equipment. Similarly, I

chose to use BASIC for all purposes
except the data-collection process
itself because of the ease of program-
ming, even for novices; when the
programs are completely tested, they
are converted to compiled BASIC to
greatly increase their execution
speed.

In order to encourage a variety of
users, I put the (now several) IBM
PCs on carts so that the computers
can be wheeled from experiment to
experiment. Each cart contains a 64K-
or 128K-byte IBM PC with a color-
graphics monitor adapter and green
monitor; dual 320K-byte disk drives;
a combination board containing an
A/D converter, D/A (digital-to-analog)
converter and programmable clock;
and a preamplifier and filter com-
bination. A typical system in use is
shown in photo 1.

Each of the components on the cart
is designed to accommodate inter-
faces to a variety of instruments. If
you are attempting to develop a
similar system, it may help to have a
description of why I selected each
component,

Data-Acquisition Board
Several different manufacturers
now market general-purpose data-

Photo 1: The general-purpose laboratory interface station can be moved easily from instrument to instrument because it is on a laboratory
cart. The IBM PC contains a color/graphics monitor board and a Tecmar Lab Master interface board. The preamplifier box is perched on
top of the larger control device for the polarograph, in the center. The electrodes for the polarograph are at the right side of the photo.

acquisition boards (see reference 4).
These usually include a multi-
channel A/D converter, one or more
D/A converters, and a programmable
clock as standard features, with op-
tions such as programmable gain,
higher acquisition rates, and DMA
(direct memory access). For most
scientific applications, a 12-bit A/D
conversion is necessary; 8-bit A/D
converters simply do not provide
adequate resolution.

In addition, most laboratories now
use nonintegrating A/D converters
rather than integrating types because
of the slow speed of the latter. The
primary advantage of the integrating
A/D converter is the reduction of
noise; however, this can be accom-
plished instead through appropriate
software used with the nonintegrat-
ing type. The A/D converters on
almost all of the general-purpose
data-collection boards now available
are of the nonintegrating type.

While not essential, a program-
mable clock is highly recommended.
Although timing can be controlled by
carefully timed program loops, usual-
ly in assembly language, it is much
more easily and accurately achieved
in hardware.

For these reasons, I chose to use a
Tecmar (6225 Cochran Rd., Cleve-
land, OH 44139, (216} 349-0600) PC-
Mate Lab Master board with a 16-
channel, 12-bit nonintegrating A/D
converter with no programmable
gain and a general-purpose clock/
timer. The board also contains two
D/A converters and a digital I/O
(input/output) section that I do not
routinely use, but which you may
need if you plan to control the opera-
tion of your instrument as well as col-
lect data from it.

Connecting the Interface
In order to use the hardware inter-
face in your lab, you must first con-

nect the interface to the instrument.
If the instrument has a recorder out-
put, this is very easy to do; simply
connect the A/D converter input to
the recorder output wires. For signals
below 1 volt maximum, the pream-
plifier should be interposed between
the A/D converter and the instru-
ment.

Often, particularly on more re-
cently designed instruments, both a
recorder output and a BCD (binary-
coded decimal) or other computer-
compatible output exist. If there is a
computer output, no A/D converter
is needed; instead, a digital I/O
board, serial interface, or other hard-
ware is required. Unfortunately, I
found that the documentation pro-
vided by Tecmar on the digital I/O
section of the interface board is
almost no help to those who are not
already familiar with this type of
hardware.

Alternatively, if no suitable output

BYTE May 1984 367

5-POSITION ROTARY SWITCH

R§-232C
FEMALE N/C

21 NEGATIVE

QUTPUT

{BANANA
JACKS)

INPUT INPUT

@RED

o

POSITIVE [
INPUT

1
I
]
|

LOW-PASS FILTER
IS J

=15%

COMMON

+15V

|

POWER ONE
POWER SUFPLY,
MODEL AAlS-8

oUT-
SENSE- O

COoM
SENSE +
out+
115VAC
INPUT

QO 12v
— () 15v
——() COM

1/2A (3AG)
FUSE

” POWER
INDICATOR
808 LED

| ON /OFF

116VAC
INPUT

]
p——

o\]

Figure 1: The schematic diagram for the preamplifier described in the text. The low-pass filter is optional.

is provided, it may be necessary for
someone with knowledge of the elec-
tronics of the instrument to locate for
you the portion of the circuitry
needed to provide a suitable voltage
output to the A/D converter. Where
possible, this voltage should be in the
volt range, rather than in millivolts
(mV) or microvolts (uV). Fortunately,
most instruments have recorder out-
puts and consequently are very easy
to interface.

Preamplifier

Depending upon the instrument
being interfaced and the A/D board
being used, varying amounts of pre-
amplification are needed. I designed
our system to accommodate a wide
variety of possible inputs; hence, a
simple ampilifier circuit was included
to permit five different gains between
1 and 1000. The amplifier schematic
is shown in figure 1.

Alternatively, a programmable-gain
A/D board may be desirable, al-

368 BYTE May 1984

though that option is usually much
more expensive than a separate am-
plifier. There is another reason for
separate preamplifiers, however. In-
struments with full-scale outputs of
under 10 mV are common in scientific
laboratories because of the wide-
spread availability of 10-mV strip-
chart recorders. For these instru-
ments, your best alternative is to
build the preamplifier into the instru-
ment itself, or at least to connect it so
that it is as near as possible to the in-
strument. This reduces the amount
of noise picked up by the low-level
signal lines that, in effect, act as
antennas to the various sources of
electronic noise in the environment.
In general, the shorter the distance
between the instrument and the A/D
board, the better the signal-to-noise
ratio will be in the final data.

Filter
The most general solution to noisy
signals is software filtering, because

the filter can be varied to best match
the noise level. However, particular-
ly for low-level signals and low data-
collection rates, e.g., 1-mV signals at
60 Hz (hertz), 1 have found it useful
to have a hardware filter because of
the large amount of computation
time required for extensive software-
based filtering. For such instruments,
I use the simple, passive, low-pass
filter included in figure 1. This filter
has a cutoff frequency of approxi-
mately 0.5 Hz, which is adequate for
filtering out the most common noise
signals that are 60 Hz or higher in fre-
quency. More expensive filters, in-
cluding active and notch filters, may
be desirable for specific applications.
Almost any “electronics for scientists”
text can be consulted for more details.

Data Collection

One aspect of interfacing that texts
often neglect is the need for general-
purpose programs to collect, plot,
and process the instrumented data.

However, by having a suitable library
of general-purpose routines, you can
shorten the development time for
your specific interface considerably.
By using the general-purpose data-
collection, smoothing, and display
routines described here, you can con-
centrate all of your efforts on develop-
ing the device-specific portion of the
software and end up with a higher
quality product in a much shorter
time than if you “reinvent the chip”
for each new interfacing project.

In order to provide high data-
collection rates and a real-time plot,
[wrote a data-acquisition routine in
assembly language. The routine illus-
trated in listing 1 provides rates up
to 2400 Hz with a real-time plot, and
up to 20 kHz without plotting. Even
faster rates are possible with special
hardware settings of the standard
Tecmar board, and rates up to 125
kHz are available as an optional fea-
ture. However, very few instruments
will require higher rates than 20 kHz.

The routine in listing 1 assumes the
use of the Tecmar Lab Master data-
acquisition board, so that some of the
code is device-specific and would
need to be modified for use on other
systems,

Although the listing is fully docu-
mented, several comments are re-
quired. First, using the excellent pro-
cedure suggested by Rollins (see ref-
erence 2), the routine begins with a
header section to enable it to be con-
verted by EXE2BIN to a binary file
that can be loaded into memory with
a BASIC BLOAD command. Second,
high-resolution plotting is done
using the BIOS VIDEO__IO routine,
which is invoked with interrupt 16 (10
hexadecimal).

Three different clock rates are used,
depending upon the desired data-
collection rate. This is done to achieve
maximum precision. For high data
rates, the 1 MHz clock in the Tecmar
board is used directly. For rates below
31 Hz, a 10-kHz subfrequency of the
clock is used; to'use the 1-MHz clock
directly would require chaining
- several of the counters together. Rates
of less than 1 Hz are counted with a
100-Hz subfrequency.

At very high data rates, it is pos-
sible that a conversion may take place

370 BYTE May 1984

Listing 1: An assembly-language data-collection routine for use with the IBM PC and the
Tecmar Lab Master board,

H
i
H
;
H
H
H
H
i
H
H
H
H
H
H

i
CSEG

BEADER:

TEMP
PLOT
TEMPSI
OVRUN

TITLE TIMER

S.C.. GATES DEPARTMENT OF CBEMISTRY, ILLINOIS STATE

UNIVERSITY, NORMAL, IL 61761

SUBROUTINE TO DO TIMED DATA COLLECTION FROM TECMAR BOARD
CALL FROM BASIC WITH CALL OF FORM:

WHERE

SEGMENT

ASSUME C5:CSEG,

[3):]
DW
DW
OW
DWW
oW
oW
DW

tCEFINITIONS:

ADDO
ADD4
ADDS
ADDS
ADDSB
ADDY

;
TIMER

; BRAKCH TO HERE IF PGINTS/SEC < O,

=1808

=ADDO+4
=ADDO+5
=ADD0+6
=ADDO+8
=ADDO+$

PROC
PUSH
HOV
MOV
MOV
MOV
MOV
Mov
MOV
ouT
HOV
nov
MOV
MOV
MOV
MoV
MGV
ouT
nov
mov
KoV
INT
KOV
IN
MOV
wov
ouT
MOV
MOV
ouT
MOV
ouT
MoV
MoV
ouT
nov
MoV
ouT
CMP
JGE
CHP
JG

CALL TIMER {(A%(1l),F%,P%,N%,C%,5%)

A% IS ARRAY WHERE DATA ARE TQ BE STORED

F% 18 OVERRUN FLAG--SET TO ZERC UPON NORMAL EXIT
OTHERWISE SET TO VALUE OF CX REGISTER TO GIVE
NUMBER OF PQINTS NOT COLLECTED

I5 0 TO OMIT REAL-TIME PLOT, OTHER TO PLOT

I5 NUMBER OF POINTS TO BE COLLECTED

IS5 CHANNEL NUMBER OF A/D

15 NUMBER OF DATA POINTS PER SECOND

3% MUST BE <= SPEED OF A/D

IF S% <0 THEN MEANS WANT THAT MANY SEC/POINT

P%
N%
%
S%

DS: NGTHING

OFDH ;CODE FOR BLOAD FILE
0
[}
RTN_LEN
? ;TEMP. STORAGE
? ;PLOT FLAG:
? ;TEMP STORAGE FOR 81 REGISTER
? ;OVERRUN OF A/D FLAG
;BASE OF TECMAR BOARD

1A/D CONTROL BYTE

+A/D CHABHNEL NUMBER

;A/D START

;jCLOCK DATA PORT

;CLOCK CONTROL PORT
FAR
BP :SAVE BP
BP,SP +SET BASE PARAMETER LIST
DI, [BP]+6 :GET DATA POINTS/SEC
X, [D1) : INTO BX REGISTER
BX,AX
DI, [BP]+8 :GET CHANNEL NUMBER
AX, [DI] : BND STORE AS AX
DX, ADD5 H AND OUTPUT TO A/D
DX, AL : (LUSE ONLY LOWER BYTE)
DI, [BR]+10 ' ;GET NUMBER OF DATA POINTS
CX, [DL] : STORE IN CX REGISTER
Di,[BP])+12 ;GET PLOT FLAG
Ax, [DI) ; STORE IN MEMORY
PLOT, AX
AL,128 ;SELECT A/D MODE (DISABLE AUTOINCREMENT,
DX,ADD4 ; EXTERN, START CGNVERSION, ALL INTERRUPTS
DX, AL ; GAIN=1)
AX,0 :SI IS X-VALUE OF PQINT TO BE
TEMPSI,AX :+ PLOTTED--SAVE FOR LATER
AX,6 ;SET UP BIGH-RES GRAFHICS FODE
108
DX ,ADD6 sRESET DONE FLIP-FLOP OF A/D
AL, DX
DX, ADDY ;SET DATA POINTER TQ MASTFR MODE REGISTER
AL, 23
DX, AL
DX, ADDE sSET MASTER MODE REGISTER FOR SCALER CONTFOL=
BL, G : BCD DIVISION, ENABLE INCKENMENT, B-BIT BLS,
DX, AL ; FOUT ON, DIVIDE BY 16, SOURCE=F1,
AL,128 : COMPARATORS DISABLED, TOC DISAEBLED
DX,AL
DX, ADDY 1SET DATA FQINTER TO COUNTER MODE OF
AL,S ; REGISTER 5
DX, AL
DX, ADD8 :SET COUNTER 5 FOR COUNT REPETITIVELY,
AL,33 ;BINARY COUNT,COUNT DOWN, ACTIVE HIGH
DX, AL ;TC, DISABLE SFECIAL GATE, RELOAD FROM LOAD,
BX,31 ;CHECK IF >= 31 POINTS/SEC
FAST ;IF 80, JUMP TQ FAST
Bx,0 :CHECK IF > 0 POINTS/SEC
MED $1IF 50, JUMP

MEANS THAT WAKT LESS THAN

; ONE POINT/SEC.

SLOW:

BRANCE TO

FAST:

MOV
ouT
REG
MOV
MOV
MUL
JMP

Mov
our
HOV
MOV
MUL
L1V

2L,13 :SET T0 100 KZ (NO GATE, RISING EDGE
DX, AL H OF F5)

BX ;GET ABSOLUTE VALUE OF BX

AX,BX ;AND MULTIELY BY 100 TG GET COUNT
DI,100

DI

GO

HERE FOR 31 TO 20,000 POINTS/SEC--USE 1 MHZ CLOCK

AL,11 $COUNT AT 1 MHZ (NO GATE, RISIKG
DX, AL H EDGE OF Fl)

AX,10000 :DIVIDE 1,000,000 BY PTS/SEC BY
DI1,100 ;3 GETTING 10E6 INTC DX+AX

DI

BX :BX=FTS/5EC; RESULT IN DX+AX, BUT

: IGNORE DX, SINCE DX=0
Listing 1 continued on page 371

Listing 1 continued:

CHP AX,200 ;DISABLE INTERRUPTS IF >=5000
JG FAST2 H POINTS/SEC
CLI
FAST2: JMP GO
;BRANCH TO HERE FOR 1 TO 30 POINTS/SEC~--USE 10 KHI CLOCK
MED: MOV BL,13 ;COUNT AT 10 KHZ (NO GATE, RISING
ouT DX.AL : EDGE OF F3)
MOV AX,.10000 ;CALCULATE NOUMBER OF TICKS OF 10,000 HZ CLOCK
CWD : FER DATA POINT BY DIVIDING
pIv B3 ; 10,000 BY POINTS/SEC
;START CLOCK TICKING AT DESIRED RATE
GO MOV DX,ADDE H AND LOAD COUKTER 5 WITH TICKS
DEC BX : (COUNT 7O ZERO, S50 DECREMENT X
our DX,AL i FOR CORRECT CQUNT}
MOV AL, AH
our bX,AL H 8 BITS AT A TIME
MOV DI, |BPl+14 ;GET OVERRUN FLAG ADDRESS
MOV WORD PTR [DI),0 ;ZERQ THE FLAG
nov OVRUN, DI ;AND STORE THE FLAG ADDRESS
MOV DI, [BP]+16 :GET ADDRESS OF DATA ARRAY
MoV DX ,ADDY ;LOAD COUNTER 5 FROM LOAD REGISTER
mov AL,112 H AND ARM {START COUNTING)
ouUT DX, AL
MoV DX, ADD4 ;ENABLE EXTERNAL START (PINS 3 + 4 OF
MOV AL,132 : CONNMECTOR J2 MUST BE CONNECTED}
our DX, AL
;BEGIN DATA COLLECTION; COLLECT UPON EXTERRAL START TRIGGER
DONE: MOV DX, ADD4 ;CHECK IF DATA READY
IN AL, DX
CMP AL, 128 :BY CHECKING READY BIT (BIT 7)
JB DONE :LOOP UNTIL READY
TEST AL, 64 SEE IF DATA OVERRUN FLAG SET
JNE ERRMESS :IF 50, ROTIFY BASIC PROGRAM AND EXIT
MOV DX,ADDS ;YES, DONE, SO GET LOW BYTE OF DATUM
IN AL, bX
MOV IDI},AL ;ARD STORE IT
INC I ;GO TO NEXT LOCATION IN ARRAY (1 BYTE LATER)
MoV DX, ADD6 :GET HIGH BYTE AND STORE IT
IN AL,DX
MOV (DI].AL
INC DI
CMP FLOT, 0 ;DON'T PLOT IF PLOT FLAG=0
J2 NOPLOT
+PLOT ROUTINE STARTS HERE
KOV TEMP, CX iSAVE CX FIRST
MOV AH,AL ;GET HIGH BYTE JUST TAKEN
MOV AL, [DI-2] sAND LOW BYTE FROM STORAGE SO AX=DATUM
ADD AX, 2047 JCALCULATE Y~VALUE TO PLOT =
CWD ; 199-((DATUM+2047)/21)
MOV BX,21 ;DIVIDE BY 21--QUOTIENT IN AX
DIV BX
MOV DX, AX sRESULT INTO DX
NEG DX ;NEGATE AND ADD TO 199
ADD DX,199
MOV S5I,TEMPSI ;GET X~VALUE OF LAST POINT ON SCREEN
INC SI ;G0 TO NEXT LOCARTIGN ON SCREEN
CMP S5I,640C ;TEST IF AT RIGHT EDGE OF 640 X 200
JL Ml ;5 SCREEN
®OV 81,0 ;IF S0, GO TQO LEFT EDGE TO PLOT
Ml: MOV CX,s1 ;GET X-VALUE INTO CX
MOV TEMPSI,SI s SAVE X VALUE
MOV AX, 3073 jAH=12,AL=1 T0 WRITE DOT TO SCREEN
INT 10H s PLOT POINT
MOV CX.TEMP ;RESTORE CX
NOPLOT: LOOP DONE :DECREMENT CX AND LOOP IF >0

:BRANCH TO HERE UPON FINISH OR OVERRUN

NOGO: MOV
MOV
ouT
STI
POP
RET
ERRMESS: MOV
MOV
JMP
TIMER ENDP
RTN_LEN
CSEG ENDS
END

DX, ADD4 $TURN OFF A/D
AL,0
DX, AL
;RESTORE INTERRUPT SERVICE
BP :RESTORE BP
12 ;6 ARGUMENTS IN CALL X 2=12
DI,OVRUN _$3ET OVERRUN FLAG SINCE A/D GUING
WORD PTR [DI],CX :TOO FAST
ROGO
EQU 5-TEMF ;LENGTH OF ROUTINE FOR HEADER
HEADER ;NEEDED FOR & .BIN FILE CONVERSION

Listing 2: General-purpose data-collection, graphing, and smoothing program in IBM PC
BASIC (DOS 1.10).

10 REM GENERAL PURPOSE DATA COLLECTION PROGRAM

20 REM S. GATES, DEPARTMENT OF CHEMISTRY, ILLINOIS STATE UNIVERSITY,

30 REM

NORMAL, IL

40 REM Some FOR...NEXT loops are compressed tc speed execution

50 CLEAR,31000:

BLOAD "TIMER.BIN",31000: TIMER=31000 'Get timer routine

60 DIM A%(1000),B(1000),5G%({9)

70 WIDTH 80:CLS

80 INPUT " Do ycu wish to process data that have already been collected?";¥$
99 IF ¥$="y" OR Y$="Y" THEN Y=4: GOTO 300
100 INHPUYT "Enter your name, please”; NAMS
110 D$=DATES: TS=TIME$: INPUT "Enter the sample identificatiecn, please."; S$

Listing 2 continued on page 372

before the previous data point has
been read from the A/D converter.
This is referred to as an overrun.
Thus the program must check for the
occurrence of an overrun. Upon find-
ing one, the assembly routine sets a
flag that can be read by the BASIC
program once the data collection is
finished.

At very high data-collection rates,
interrupt-driven processes occurring
in the computer, such as interrupts
by the system clock, may interfere
with data collection. Indeed, initially
this program was limited to 6 kHz
until I realized that the interrupts
from the system clock were taking too
much time. For this reason, at rates
above 5 kHz, the subroutine turns off
interrupts with a CLI (clear interrupt
flag) instruction; when data collec-
tion is completed, the interrupts are
again enabled by using an STI (set in-
terrupt flag) instruction.

At low-to-moderate data-collection
rates, it is useful to have a real-time
plot. This is done for each data point
collected by loading the low and high
bytes of the data point into a register
and converting it so that the screen
displays a —10-volt A/D reading at
the bottom and a + 10-volt reading at
the top—i.e., so that the full screen
is used for the display.

When this assembly-language rou-
tine is linked to a higher level pro-
gram, such as a compiled BASIC or
FORTRAN program, only minor
changes are required. The Header
section must be removed, so that the
code starts at Temp. The Timer pro-
cedure must be made Public, and the
last line of the routine must include
an End statement instead of an End-
Header statement. After assembly,
the subroutine is linked to the call-
ing program using Link in the nor-
mal fashion; EXE2BIN does not need
to be run in that case.

Sample BASIC Program

A short interpreter BASIC program
for the IBM PC that uses the assem-
bly-language routine is shown in
listing 2. The program sets aside a
region of memory for the routine; the
location chosen in line 30 may vary
depending upon the amount of
memory available in the system. The

BYTE May 1984 371

For low-cost R$-232C port ' value 31500 is correct for a 64K-byte scaled to fill the entire screen.

expansion, Ba system using Advanced BASIC. Once the data has been collected
m After the data has been collected, and displayed, you usually will need
2 H]" L the overrun flag is checked, and the to remove high-frequency noise. A
RI SERIAL pm-ﬁkaN‘DE'RS data is displayed in the high-resolu- simple method for doing this in soft-
1 tion graphics mode. The data is ware is shown in listing 2. It uses a

¢ Listing 2 continued:

120 PRINT "Please enter 3 lines of experimental description, including™:
PRINT "Sample preparation, instrument settings, etc.,”
¢Increase /O portsto 4, 8 or 16. 130 FOR I=1 TO 3: LINE INPUT L$(I): KEXT I
* Tl] evices. 140 INPUT "Enter the channel number (0 to 15%)"; C%
Mixsmatd‘pe phera d 150 INPUT "Enter the number of data points to collect.";N%
¢Port selection through software 160 INPUT "Enter the nuwber of data points/second desired. "; S
control; all ports can run with %;g g;;fﬂ‘ E? 8¢ 1 THEN S:=_1t!_/st ‘anvgrt tg Prgp:r foirfattfor timer rovtine
ype any key to start count~down for data collection.
different configurations. 190 1$=IKKEYS:IF I8="" THEW 194
+Models for most applications. 200 CLS: FOR I=10 TG 0 STEP ~1: LOCATE 12,40 : PRINT I1: FOR J=1 TO 500:NEXT J:
NEXT I 'Count down; J loop is delay between counts
210 F%=0 'Initialize overrun flag
220 P¥=1:1IF 5% > 2000 THEN P3%=0 'Plot 1if < 2000 pts/sec
EL 326F 5619 230 CALL TIMER(A%(1l},F%,P%,N%,C%,5%) 'Collect data; all variables MUST be
MODEL 47 INTEGER!
compyTER P—— With its 240 1F F%<> 0 THEN PRINT "Warning--data taken toc fast": N¥#=N%-F%
host port 250 FOR 1=1 TO W%
pe 260 IF AR(I} > 32767 THEN A%(I1)=A%(I}-65535!
. and eight 270 A2 (1}=A%(1}/.2047; 'Store input as mV, assuming -18 to 10V range
: 280 HEXT I
e, sPEn perlpheral 290 CLS: PRINT " Enter a 1 to plot data c¢n the screen”:
PR s ports cap- PRINT " A 2 to store the data in a file."™: PRINT " A 2 to smooth the data":
able of any- PRINT " A 4 to get anothez Eile®:PRINT " A 5 to exit": INPUT Y
it -portint . 300 ON Y GOSUB 340,510,670,770,890
port-to-any-port interconnection, net- 310 GOTO 290
working applications with this unit are g%g ;;;*;*“ SUBROUTINES **:f*****
i Screen plotting routine
virtually uniimited. 340 SCREEN 2 :KEY OFF
350 DEF FHNSCALE(Z%)=150-1%0*(Z%-YMIN)/ (YMAX-YMIN}
- 360 INPUT "Enter the label for the graph",LABS .
~ 370 CLS:YMAX=A%(1): YMIN=A%(1)
380 FOR I=1 TO WN%
P 39¢ IF A%R{I}<YMIN THEN YMIN=A% (I} ELSE IF A%(I)> YMAX THEN YMAX=A%(I)
24553\9 400 NEXT I
MODELS i 410 YPLOT=FNSCALE{A%(1))
420 PSET {(60,YPLOT),0 'Go to first point
3146 MODEMS L —— 430 FOR I=2 TG N%: XPLOT=60+579%(I-1}/(N%-1): YPLOT=FNSCALE(A%(I)):
LINE -~ {XPLOT,YPLOT): NEXT I
440 LOCATE 25,40 : PRINT LABS;: LOCATE 1,1 : LINE (60,0)-(639,1%0),,B 'label
i and box plot
Th.ISUnita“OWSfOUr"neSOfdatatObe 450 LOCATE 25,8 : PRINT "1";: LOCATE 25,75 : PRINT N%;: LOCATE 1,1 :
multiplexed and sent sequentially over PKINT YEAX;: LOCATE 24,1 : PRINT YMIK; '‘Label axes
a single line, then demultiplexed by a 450 LOCATE 6,1: PRINT "Type any key to continue”;
. " . YYo= 'S fg=""
2nd 524E with automatic distribution a9 EETUKEYS:IF ¥§STT THEN 470
to the corresponding peripheral ports. 490 REE **wxsdsw
500 REM Subroutine to store data in a file

mm" 510 INPUT "Enter the name of tne file in which the data are to be stored.”;FILNS
mNTENHO 520 OPEN FILNS FOR OUTPUT AS #2

4
This unit maximizes

utilization of available
ports, Among other con-

530 WRITE #2,NAMS,D$,TS 'Save name, date, time

540 WRITE 2, S§ 'Save sample descriptien
550 FOR I=1 TC 3: WRITE ¥2,LS$({I}): NEXT I ' and conditions
560 WRITE ¥2,N%,5% 'number of points, sampling rate

570 FOR T=1 TO N%: WRITE #2,A%(I): NEXT I

580 CLOSE #¥2: RETURK

590 REM LER LRSS]

600 REM Subroutine to compute second-order 9-point Savitzky-Golay smooth

figurations. 6 ter- 7 610 REM including smooths at both beginning and end of data
minals can con- E§$g5g| [620 REM It computes a "smoothed"” value for each point by adding together
[630 REM the 4 points on either side of it, ples itself, each multiplied
tend for 3 ports or 640 REM times the corresponding coefficient.
7 terminals for 2 650 REX It then computes the "smoothed™ value for each successive point
660 REM using the coriginal data array.
ports. 1595 670 DATA -21,14,39,54,59,54,39,14,-21: 'Savitzky-Golay coefficients
m .s 650 RESTGRE
> A £30 FOR I=1 TO 9:READ SG%({I):NEXT I 'Get coefficients
Tt LT 700 FOR I=l TO K%: B(I)=0:DF%=0: FOR J=-4 TO +4: IF I+J< 1 OR I+J>Nt THEN 720
710 B{I)=B(I)+A%{I+J)*SG%{J+5) ;DF3=DFL+5G3(J+5)
720 NEXT J:B(I}=B{I)/DF%:NEXT I 'Divide by sum of coefficients used
730 FOR I=1 TO H%: AR{I)=B(I): NEXT I 'Store back in original array
740 RETURN

750 REM **akdkdn

760 REM Subroutine to read previcusly collected data from disk file
770 INPUT "Enter the name of the file to be processed. " ; PILNS
780 OPEN FILNS FOR INPUT AS #2

750 INPUT #2, NAMS,DS, TS
_Toplaceyourordgror 800 INPUT #3288
discuss your expansion needs... 810 FOR I=1 TC 3: LINE INPUT #2,LS$(I): NEXT I

820 INPUT #2,N%,5%

I_m523_2702 830 PRINT NAMS,D$,T$: PRINT S$: FOR I=1 TO 3: PRINT LS${I}: NEXT I
840 PRINT "Hunmber of points= "; N%, "Points/sec= "; §

850 FOR I=1 TO N%: INPUT #2,A%(I): WEXT I
€60 CLOSE #2: PRINT "Type any key to continue”
BAY TECHNICAL ASSOCIATES, inc-.. 870 YS=INKEY$: IF Y$="{PTHEN>’37QY
HIGHWAY 803, P.O. BOX 387 880 RETURN
BAY ST. LOUIS, MS 39620 890 END
(801) 487-8231

372 BYTE May 1984

(2a)

(2b)

(2¢)

(2d)

Figure 2: The effect of filtering on noise levels can be very significant. Figure 2a shows 200 data points taken from an instrument over a
period of 20 seconds. Ideally, the signal should be a straight line, but instead shows both long-term and shori-term noise. In figure 2b, data
from the same instrument is passed through a digital (software) filter once; in figure 2c, it is passed through the filter twice. In figure 24,
data from the same detector is passed through a hardware low-pass filter.

“Savitzky-Golay” type smoothing al-
gorithm (see reference 3), which is a
rapid, easily implemented smoothing
technique that is equivalent to fitting
a least-squares line through the data.
The order of the fit and the number
of points included in the fit can be
modified to provide varying amounts
of smoothing. A second-order, 9-
point smooth is the one most often
used in my lab. In picking which soft-
ware filter to use, you may find an ar-
ticle by Cram et al. quite useful (see
reference 1). For severe noise prob-
lems, other techniques such as en-
semble averaging or filtering using
fast Fourier transforms may prove
useful.

The usefulness of the filtering pro-
cess is illustrated in figure 2. Figure
2a shows data collected from the
detector of a high-performance liquid
chromatograph, without filtering. In
figure 2d, data was collected from the
same detector, but with the low-pass

374 BYTE May 1984

hardware filter being used. In figure
2b, the data is exactly the same as the
unfiltered data (figure 2a), except that
it has been passed through the
Savitzky-Golay second-order, 9-point
filter contained in listing 2. In figure
2c, the data from figure 2a has been
passed through the Savitzky-Golay
filter twice; the reduction in the noise
is striking. I often use a combination
of hardware and software filtering for
optimum results.

Examples of Use

[offer a four-week course to science
students that teaches them to inter-
face to a variety of scientific instru-
ments using the techniques de-
scribed in this article. Students spend
one week learning BASIC, two weeks
learning the concepts of interfacing
and writing simple programs, and

‘one week interfacing the computer to

a specific chemical laboratory instru-
ment.

Although the students learn to
write data-collection and display rou-
tines in BASIC, for their final project
they use the Timer routine in listing
1. Using the standardized interfacing
system, in one week’s time they have
written complete data-collection and
analysis programs for a number of
different instruments, including a pH
meter, a UV (ultraviolet)-visible spec-
trophotometer, a differential scan-
ning calorimeter, a high-performance
liquid chromatograph (HPLC), and a
polarograph. Even though these pro-
grams were written in one week’s
time, each of these programs is now
in routine use in our teaching or
research laboratories.

I'll use two examples to show how
quickly and easily instruments can be
interfaced using this approach.

One student interfaced an IBM PC
to a polarograph, using the circuitry
shown in figure 1. The polarograph
already has a sophisticated preampli-

The Tecmar board can be given instruc-
tions, and have information read from it,
in one of two ways: either the 1/O (input/
output) mode or the memory-mapped mode
can be used. In the 110 mode, various func-
tions of the board are accessed through
ports, which are addressed with INP and
OUT instructions in BASIC, or IN and
OQUT instructions in assembly language.
In the memory-mapped mode, the func-
tions are accessed at a series of consecutive
memory locations; this requires PEEK and
POKE instructions in BASIC, or any
memory-addressing instruction in assem-
bly language, such as MOV or TEST.

The choice befween these two modes is

largely a matter of personal preference. The

memory-mapped mode is slightly faster but
the board is configured at the factory for

the /O mode, which is probably the
simpler mode to program. In either mode,
you must select the base address, which is
the first of 16 consecutive addresses used
to communicate with the various functions
on the board. The base 1/0 address set at
the factory is 1808, However, other base ad-
dresses, as well as the memory-mapped
mode, may be selected using the appropri-
ate jumpers or switches.

Other options available on the board in-
clude auto-incrementing of the A/D
(analog-to-digital) converter (automatically
switching the channel from which data is
being taken), and the range of the signals
coming from or going to the instrument.
In addition, three types of inpuls to the
A/D converter are selectable by appropriate
jumper settings: single-ended, pseudo-
differential, and true differential. The
single-ended setting is normally used, but
the differential modes are particularly use-
ful with low-level signals in environments
with large amounts of eleciromagnetic
noise. It is also possible to use interrupts
to signal the computer when the A/D
board has data ready for storage.

The system described in the text uses a

Using the Tecmar A/D Board

~10¥ to +10 bipolar range for the A/D
board, clock triggering of the A/D board,
and a single-ended input. Only one instru-
ment is normally connected, so the auto-in-
crementing feature is disabled, as are in-
terrupts. Timer 5 is used fo trigger the A/D
board.

The clock portion of the Tecrnar board
provides a general-prirpose mechanism for
timing various events or for providing
timed pulses for triggering various events.
At least 18 different modes of operation are
possible, each with several options. T the
average user, this number of possibilities
can prove highly confusing at best.

For triggering the A/D board at specific
intervals, however, the process is fairly
straightforward. The clock circuitry con-
tains a 1-MHz clock, which is further sub-
divided either by powers of 10 (BCD scal-
ing) or by powers of 16 (binary scaling),
depending upon the option selected. Any
one of five counters can be lopded with a
count, which is then either incremented
or decremented every kime the clock “ticks.”

For example, with a BCD scaling of
divide-by-100, the clock provides a 10-kHz
output. Assuming the count is in a
downward direckion, then the 16-bit
counter can be loaded with a value of 99
to provide an output pulse to the A/D
board every 0.01 second (i.e., 10kHz + 100
= 100 Hz). Note that the counter provides
an outpuf to the A/D board when it at-
tempts to go below zero (called the “ter-
ntingl count”); hence, the counter is set to
99 rather than to 100.

To connect the counter pulses to the A/D
converter, the output from the specific
counter must be directed to the trigger in-
put of the A/D converter. Because of the
pin placement on the Tecmar board, the
easiest method for doing this is to connect
the output of counter 5 fo the A/D con-
verter by jumpering pins 3 and 4 of con-
neclor J2.

All of the functions of the clock are con-

trolled using two 1/0 ports accessible to
any program. Altheugh these poris are
termed control pori and data port, both
ports are needed fo set up the correct tim-
ing sequence. In a typical use of the timer,
the control port is first directed fo point to
an internal register called the master mode
register. You then select the various con-
trol options by loading a 16-bit word into
the master-mode register via the data port;
this selects options such as whether an 8-
or 16-bit 1/O bus is being used, what is fo
be used as a source of the clock frequency,
and so forth.

Most of the information, however, is
loaded into another internal register, the
“counter-mode register” There is one such
register for each of the five counters. Hence,
the program uses the conirol port to select
which counter-mode register is fo be used;
in this case, the one for register 5 is
selected. The counter-mode register is then
loaded, through the data port, with the
various options selected for that register.
Options include whether to count up or
down, whether to count in binary or BCD,
and which subfrequency of the clock is to
be used. Special options are available if the
counters are fo be used as a time-of-day
clock.

When the program is ready to begin col-
lecting data, the appropriate counter must
be loaded with the correct count and
“armed,” i.e., started counting. Assuming
that the A/D converter has been set o
tecognize the signal from the clock as o trig-
ger by enabling the external start bit, the
A/D converter will automatically initiate
a conversion (data collection) every time
the counter register goes to zero. Hence, the
program only needs to wait yntil the A/D
converfer signals that it has completed a
conversion and then store the data; no tim-
ing loops need to be written. The A/D con-
verter will continue to be triggered by the
clock until the clock output is turned off

by the program.

fier system, so a 10-volt signal could
be readily obtained. Hence, the stu-
dent set the preamplifier on the in-
terface cart to a gain of 1, attached it
to the recorder output of the polaro-
graph, used no filtering, and set the
Timer routine to collect data for a
period of time determined by the
potential range scanned.

The major task of the student,
then, was to understand the theoret-

376 BYTE May 1984

ical basis of the instrument readings
and to design a program in BASIC to
analyze the data. In order to ac-
complish this, the student had to fit
a least-squares line to a sawtooth
wave function, determine the inflec-
tion point in the curve, and calculate
the distance between the two least-
squares lines at the inflection point.
The A/D readings were then con-
verted to current values in micro-

amperes and the time scale was con-
verted into the applied potential in
millivolts.

Students in the analytical chemis-
try class now use data collected with
this system from a series of standard
lead samples to calculate the amount
of lead in leaded gasoline. Photo 2
shows data collected by a group of
students for a standard sample of
lead.

| POLAROGRAM

1|

122 upMPS |}
4?@. mis ,,l 3§

Photo 2: Students taking our analytical chemistry laboratory course
analyze the amount of lead in gasoline using the interface described
in the fext. The diffusion current (ID on the display) is proportional
to the concentration of the lead in the sample.

A second example of an instrument
that students have interfaced is a
high-performance liquid chromato-
graph. The normal output of the
HPLC is a 10-mV signal displayed on
a strip-chart recorder; hence, the pre-
amplifier was set to a gain of 1000 to
provide a 10-volt signal to the A/D
converter.

The student writing the program
divided it into two sections: a data-
collection portion and a data-analysis
portion. In the data-collection por-
tion, all of the parameters of the in-
strument and the sample to be ana-
lyzed are recorded, thus providing a
permanent record of the conditions
of the analysis. The program also
asks for the names of the substances
being analyzed, if known, and
whether an internal standard is be-
ing used.

The data collection is done using
the assembly-language routine, with
a real-time plot of the data. If more
than a predefined number of points
are collected, the data is “bunched,”
or averaged, together. The Savitzky-
Golay smooth is then performed,
and the smoothed data and identify-
ing information are stored in a disk
file.

In the second section of the pro-
gram, the peaks in the data are in-

378 BYTE May 1984

Detector response

\

J VAN

2 3 4 5 H
Time Lm;nul‘l‘s)

Figure 3: A common problem in chemical laboratory work is to
measure the areas of peaks. Each peak in this figure is integrated by

the computer program; the peaks of inferest are peaks 1and 2, which
are caffeine and benzyl alcohol, respectively. The benzyl alcohol peak

serves as an infernal standard for measuring the caffeine. The stright
lines under each peak are the baselines determined by the compuier
during the integration process. The large initial peak is a group of

unidentified substances. The sample is a cup of instant coffee.

tegrated, and the area of each peak
is compared to that of an internal
standard. Proper integration involves
deciding where each peak starts and
stops and then selecting the appro-
priate baseline to be subtracted from
each peak. The results of this process
are shown in figure 3. Again, the pro-
gram is used routinely in our analyt-
ical laboratory course; figure 3 shows
an analysis of caffeine in coffee per-
formed by a group of students in that
course.

Conclusions

One of the many advantages of the
revolution in “home” computers is
that powerful but inexpensive com-
puters can be used in scientific or in-
dustrial laboratories, even by those
with relatively limited computer
skills. Utilizing off-the-shelf com-
ponents and simple programming
languages, extremely sophisticated
data-collection and data-processing
systems can be developed very
rapidly.

The system described here repre-
sents a hardware and software solu-
tion to the problem of data collection
and analysis in a wide variety of com-
monly encountered laboratory situa-
tions. By making only minor modifi-
cations, you should be able to adapt

it to other types of hardware and to
other types of instrumentation with
an extremely wide range of applica-
tions, not only in chemistry, but in
other scientific and industrial areas as
well.m

References

1, Cram, Stuart P, S. N. Chesler, and A.C.
Brown |Il. “Effects of Digitat Fitters on Chroma-
tographic Signals” Journal" of Chromato-
graphy, volume 126, Amsterdam, Nether-
lands: Elsevier Scientific Publishing Company
Inc., 1976, page 279.

2. Rolling, Dan. “The 8088 Connection.” BYTE,
July 1983, page 398,

3. Savitzky, Abraham and Marcel J. E. Golay.
“Smoocthing and Differentiation of Data by
Simplified Least Squares Procedures’
Analytical Chemistry, volume 36, Washington,
DC: American Chemical Society, 1964, page
1627. Minor corrections were alse published
in Analytical Chemistry, volume 44, 1972,
page 1906.

4, Welch, Mark J. “Expanding on the PC” BYTE,
November 1983, page 168.

Stephen C. Gates, Ph.D. (Department of Chem-
istry, INlinois State University, Normal, IL 61761),
is assistant professor of biochemistry. He teaches a
course in computer interfacing and does research on
compuierized chemical analysis of biological samples,

Program Available: A disk with copies of
the programs described in the article is available.

Write to the author for information.

