A threaded interpretive
- language interfaced

to BASIC

for research laboratory
applications

esearch laboratories such
as ours have become in-
creasingly dependent on
computers. This spiraling
dependence has been fueled by the
decreasing cost and increasing avail-
ability and power of microcomputers.
A major impediment to the further
use of computers is the lack of ade-
guate software. T overcome this
limitation, we developed a method of
combining compiled and interpretive
higher-level languages for general use
in a diversity of laboratory applica-
tions.

In our previous work with mini-
computers, control programs were
written in a higher-level language,
such as BASIC, with assembly-lan-
guage subroutines for each special-
ized task. When two tasks were to be
performed in immediate sequence,
we either wrote a new routine com-
bining the two earlier versions or
made two separate calls to the rou-
tines from BASIC. Rewriting programs
requires a great deal of prograrmming
time, but making repetitive calls from
BASIC frequently took unacceptably
long execution times. To eliminate
both of these problems, we decided
to develop a means of linking assem-
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bly-language routines together so that
they could be used in a single CALL
statement from BASIC, Before we had
progressed very far, we found that we
had reinvented the threaded interpre-
tive language (TIL), this time in a form
that was interfaced directly to BASIC.

THREADED INTERPRETIVE
LANGUAGES

TILs consist of a set of "words”
Primary words, called primitives, con-
sist of machine-language subroutines.
More complex words, secondaries, con-
sist of a sequence of calls to primi-
tives. Higherlevel words may call
primitives or previously defined sec-
ondaries in any order. They consist
simply of a list of calls to starting ad-
dresses of the words. Program execu-
tion is rapid because all the primitives
are run in machine language and the
only extra time is that which is re-
quired to pass parameters to each
routine and to proceed from one
routine to the next.

A TIL has two distinct functicns, com-
piling and running. Compiling consists
of creating the lists of tasks to be per-
formed in sequence and placing the
necessary parameters in a place
where the primitives can obtain them.
Running consists of carrying out the
tasks in sequence. The major dif-
ference between types of threaded in-
terpretive languages is the way the
program passes from one routine to
the next by a process called thread-
ing {see reference 1). We use the tech-
nique called subroutine threading.
When running, the program simply
makes a subroutine call to each word
in sequence. Every word, both
primary and secondary, ends with a
return (RET) instruction. Since the se-

gquence of routines in our application
is initially called from BASIC. the final
RET statement in the list returns pro-
gram control to BASIC.

It might be asked why we do not use
one of the existing TILs. The principal
reason is that we require a more in-
teractive control language in the
laboratory, where every possible turn
of events cannct be anticipated when
a program is written. Another reason
is that we: find looping and conditional
branching restrictive and difficult to
use in other TILs. Finally. other higher-
leve] languages contain commands
that are convenient for performing
routine tasks but are not readily avail-
able in most TILs. -

BASIC
BASIC was developed as a language
for beginners. In fact, most people can
learn to write programs in BASIC
within a few hours, This is an advan-
tage in a university laboratory popu-
lated partially by students, where in-
experience is common and personnel
turnover is high. It is not, however, the
maijor reason for using BASIC as the
principal language in the laboratory.
Its major virtue in this setting is a char-
acteristic that might usually be con-
sidered a drawback, namely, that it is
{continued)
When Sam Fenster isw't working as a com-
puter programmer at the University of
Chicago, he is a sophomore majoting in math-
ematics and computer science at Columbia
University. Lincoln E. Ford is associate pro-
fessor of Medicine and Cardiology at the
University of Chicago.

You can write [o the authors at the Univer-
sity of Chicago, Section of Cardiology, Depart-
ment of Medicine, Hospital Box 249, $50
East 59th St., Chicago. IL 60637.

JUNE {985 « BYTE 147




SALT

BASIC has become
the standard language
of many small

computers, and thus

is constantly

being improved.

an interpretive language. This means
that every command in a program is
translated to machine language im-
mediately before it is carried out. The
need for separately interpreting each
command slows program execution
greatly. but it also makes the pro-
grams highly interactive. That is, a pro-
gram can be stopped at any point and
the operator will know precisely
where he is because his original pro-
gram is unaltered.

Once a BASIC program has been in-
terrupted, the computer can be run
in immediate mode. The operator can
instruct the computer to carry out
commands one at a time. In this man-
ner, it is possible for the operator to
determine the value of a variable,
change a variable, or even change the
path of program flow. The ability to
interrupt a computer that is interfaced
to laboratory apparatus is invaluable
when the operation of the apparatus
is not entirely predictable, as is often
the case. . :

A final advantage of BASIC is that
it has become the standard language
of many small computers, including
the IBM Personal Computer (PC). As
a result, it is constantly being im-
proved and has many useful features.

One disadvantage of some forms of
BASIC is their limited memory capa-
bility. The version used on the iBM PC
can address only 64K bytes. Although
this is sufficient space for most pro-
grams, laboratory apparatus can fre-
quently generate enough data to
make this space seem cramped. Sub-
sequent analysis can usually reduce
the data to a more manageable size,
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but it is necessary to find some way
to hold the data without severely
limiting the program area. To this end
we have designed SALT to store raw
data in areas of “high” memory above
the BASIC space. An entire block of
data can be transferred between this
space and disk. Portions of the data
in a block can also be transferred be-
tween high memory and BASIC arrays.
This ability to move large amounts of
data between high memory and disk
and to operate on smaller parts of it
in BASIC arrays provides a type of vir-
tual memory, greatly expanding the
capability of BASIC.

The major disadvantage of BASIC is
its slowness. While running programs
in an interpretive language, the com-
puter cannot respond fast enough for
many laboratory applications. To over-
come this slowness, machine-lan-
guage subroutines control the com-
puter when it is interacting with the
laboratory apparatus. A difficulty with
using simple subroutines occcurs when
two or more of them are to be run in
sequence. Program control returns to
BASIC after each subroutine call. This
return costs valuable time, and more
importantly, the time required may be
somewhat unpredictable, especially
when parameters must be passed

from BASIC to the subroutines. For’
. time-critical operations in which sub-

routines are to be run sequentially, it
was previously necessary to write ad-
diticnal subroutines, combining sarfier
ones in the proper sequence. As the
number of computer applications in
the laboratory increased, the con-
tinued rewriting of subroutine se-
guences became costly. To overcome
this difficulty, we have developed a
method of calling subroutines from a
master machine-language routine,
with one CALL statement from BASIC.

SALT

SALT is a laboratory TIL. As with all
TILs, SALT's two distinct functions are
compiling and running. All compila-
tion is performed by a single assem-
bly-language routine called from
BASIC. This routine, named LOADER,
creates secondary machine-language
words that are subsequently called

from BASIC. A secondary word con-
sists of a sequence of CALL instruc-
tions, each followed by the starting
address of the routine being called
and any necessary parameters. Thus,
a call from BASIC to a secondary
word initiates a second call to the first
word in a sequence. The final instruc-
tion in a list is RET, bringing the pro-
gram back to BASIC. It is not possible
to call any of the primitive subroutines
directly from BASIC. The LOADER
routine must first translate the name
of the routine to its starting address

and create a secondary word consist- -

ing of a machine-language CALL in-
struction followed by all necessary
parameters and RET at the end.

The secondary words in a program
are recompiled each time the pro-
gram is run. Thus, programs in SALT
are actually created and stored from
within BASIC programs. It is not pos-
sible with SALT, and probably not
desirable in general, to create secon-
dary words that retain their identity
outside the individual program. To
use SALT, a programmer must be
familiar only with the general re-
quirements of the assembly-language
routines he wishes to run and with the
requirements of the LOADER com-
mand. He need not know about any
previously written programs or about
the specifics of the assembly-lan-
guage programs. [Editor's note: See the
end of the article for details on obtaining copies
of the SALT software package.)

At present, we have more than 100
separate assembly-language primi-
tives. These are grouped into func-
tional categories described in detail
below.

HARDWARE
The software described here was writ-
ten specifically for an IBM PC
equipped with a Tecmar Lab Master
board, 512K bytes of memory, and
two floppy-disk drives. It was devel-
oped out of a need for an easy and
efficient way to make use of the Lab
Master. The general principles can,
however, be applied to any similar
computer system. Almost all labora-
tary applications can be described as
(continued)
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SALT

a combination of the following func-
tions: control of experiments, in-
cluding timing and synchronization of
external events, and setting external
voltages; data acquisition, usually
through the digital conversion of elec-
trical analog signals; data storage; and
data analysis. All of these functions
can be implemented with the hard-
ware and programs described here,
except that the topics to be described
under the heading of data analysis are
- limited to a few routines for simple
arithmetic procedures and display
that might be used as part of more
sophisticated analyses.

The Lab Master board has four dis-
crete functions required for laboratory
application: an analog-to-digital (A/D)
converter with 16 channels of input;
two digitalto-analog (D/A) converters:
a 24-channel digital inputioutput (1/0)
device; and a chip with five program-
mable counters and an internal 1-MHz
clock, whose basic frequency can be
divided either by powers of 10 or
powers of 16. Most of the software
routines that we will describe are
directed at implementing the four
functions of the board. The remainder
are used for performing simple arith-

bers and for moving blocks of data
between storage areas.

DETAILS OF OPERATION

SALT consists of a single compiling
routine, LOADER, and a large number
of small subroutines that perform
very specific operations during pro-
gram execution. The small subrou-
tines are no different from any other
type of assembly-language routine ex-
cept that many are designed to be
used in sets, For example. one subrou-
tine may set up a counter for timing
operation and another may be re-
quired to start the actual timing. The
aspect of SALT that makes it unique
is the LOADER routine that estab-
lishes the secondary words that are
called from BASIC.

LOADER

The LOADER routine that compiles
the secondary words converts all
other subroutine names to addresses,
eliminating the time required to look
up addresses during execution. It then
uses the addresses in a sequence
where each one is the operand of a
CALL, which is followed by any
hecessary parameters, A RET is

and the starting address of the entire
sequence in memory is placed in a
table. The use of memory by the
LOADER routines, as well as the
memory allocation for SALT and the
A/D data operation, is shown in figure
1. As illustrated, separate memory
areas are reserved for secondary
routines and for their addresses when
SALT is loaded into memory. The
LOADER routine fills these areas as
it compiles secondary words. In the
present version of SALT, those re-
served areas are relatively small
because there is no need in our ap-
plication to have them any larger. In
principle, the only limitation to the
size of these areas is the amount of
available memory.

The parameters passed to the rou-
tine can be of three types: fixed in-
teger values placed after the routine
call; positions of binary bits to be set
in a byte that is then placed after the
routine call; and BASIC integer vari-
ables whose addresses are stored
after the call. The following example
illustrates the operation of LOADER.

In this example, a word called DR.2
{driver routine number 2) will first con-
figure the 24 1/O lines into three 8-bit
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Figure 1: Installing SALT with a BASIC BLOAD instruction
puts the primitives and LOADER routines at the high end of
memory and reserves space for the compiled secondary words and
for a table of addresses of the secondary words. A CALL to

LOADER creates a secondary word and places the starting
address of the word in a table. The ADSET or ADLOAD
routines allocate data space in memory immediately above

BASIC. The data space is arranged into equal-size channels.
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SALT

ports such that the first {A) port is in-
put and the remaining two (B and C)
are output. Second, DR.2 initializes
counter number 1 to count 20 milli-
seconds. Finally DR.2 stops the
counter at its initialized value to wait
for the command START to begin
counting. The BASIC command to
perform this sequence is

CALL LOADER (DR.2,I0SET1.00,
TIME.1.203, STOP1).

LOADER would then create a secon-
dary word in memory consisting of
the following sequence:

CALL 1003
1
0
0
CALL 1087
1
20
3
CALL 2034
1
RET

The starting address of this se-
quence would be placed in the sec-
ond poesition of the driver table, a posi-
tion reserved specifically for the ad-
dress of the secondary word called
DR.2. The value 1003 is the starting
address of the IOSET primitive that
initializes the /O ports, and the pa-
rameters 1.0.0. specify the desired
configuration. The value 1097 is the
starting address of TIME, the routine
that sets a counter to count from the
Tecmar clock. The parameter 1 spec-
ifies the first counter, and the
parameter 20 gives the number of
pulses to count. The parameter 3
specifies the millisecond rate. The
STOP routine, which begins at ad-
dress 2034, holds counter number 1
at its pre-set count until a START1
command begins the count.

Once the initialization is complete,
another secondary word can use

parts of the Lab Master board for

other purposes. For example, a word
called DR.3 can be written to: wait for
[/O line A2 to go high; read a voltage
value on A/D channel 10; put the
same voltage on D/A channel 1; wait
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Table 1. Functional categories
of SALT's primitive subroutines.

File and data management
Timing

Analog-to-digital conversion
Digitalto-analog convarsion
Digital inputioutput
Arithmetic procedures
Miscellanaous routines

20 milliseconds using counter number
1. which was initialized by DR.2; and
set I/O channels B2 and B7 high. The
BASIC command to create this se-
guence would be

CALL LOADER

(OR3, RHA.2, VAD10, DVOLT,
VDAV1, DVOLT, START1, WAIT1,
WHB.2.7)

The two secondary words DR.2 and
PR.3 can be called from BASIC
separately, or ancther secondary
word can be written to call them in se-
quence with a single call. This latter
option would be compiled with the
command CALL LOQADER (DRJ4,
CDR.2, CDR.3), which would use the
addresses in positions 2 and 3 of the
driver table to create the assembly-
language sequence

CALL 812
CALL 871
RET

CALL DR.4 is the BASIC command
that would execute the entire se-
quence of tasks before returning to
BASIC,

The LOADER command has very
specific requirements, some of which
have been imposed for ease of the ini-
tial programming, some of which have

_been created for ease of subsequent

programming, and some of which
have been imposed by the idiosyn-
crasies of IBM BASIC. For example. all
of the secondary words are called
DR.N where N is an integer between
0 and 100, and the commands DE-
FINT D and LOADER = 3 must
precede the first call to LOADER in
the BASIC program. The starting ad-
dress of the LOADER routine is 3, The

necessity for using the DEFINT D
statement has been imposed to
eliminate the need for typing the "%"
character following each DR definition
and each BASIC integer variable pa-
rameter, such as DVOLT. The term DR
is always used to name the secondary
words so that the LOADER program
can find the beginning of the param-
eter list following the words CALL
LOADER, A CALL statement from
BASIC pushes the entire parameter
list in the statement onto the stack.
The LOADER routine examines the
stack to find the first variable, which
always begins with DR. Once this is
found, the integer following DR. is
used to identify the secondary word.

PRIMITIVE SUBROUTINES
The individual primitive can be
grouped under the separate func-
tional categories listed in table 1. They
are described below in detail by
category. The listings of the individual
routines are not given here because
they require too much space and
because they are, for the most part,
specific to the Lab Master board.
When these routines were devel-
oped, the highest priority was given
to speed. because they were de-
signed to be used in realtime applica-
tions. To achieve this speed, the rou-
tines were made as simple as pos-
sible. The number of Test and Condi-
tional Jump instructions was kept to
a minimum because they take a
moderate amount of program execu-
tion time. The desired simplicity was
achieved at the expense of some
redundancy in the program. For ex-
ample, there are nine separate rou-
tines to write nonvariable data to the
three digital 110 ports. These nine
routines differ from each other in on-
ly two characteristics, the [/Q port to
be written to, and the type of output,
ie, whether the specified channels
are to be made high, made low, or to
toggle (change from the previous
value). Since there are three alter-
natives for each of the three channels,
there are nine combinations. Each of
the routines is short (about 18 bytes),
so that the memory required for nine
{continued
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SALT

separate simple routines is not much
greater than that for a single routine
that would accept the 1/O port and the
type of output as parameters. A
larger. single routine would, however,
require much more execution time.
Execution times were measured for

all the time-critical routines that might
be used during an experiment. These
were estimated in two ways. Some ex-
ecution times were measured from
failures to make A/D recordings on a
regular schedule. A ramp voltage was
put into one channel of the A/D con-
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Figure 2: A voltage ramp was recorded at-two sampling intervals, differing by only 2
us. The digitized data was displayed at the same rate for both. Failure to make a con-
version, indicated by the arrows in B, resulted in a complete sample being missed after
every 5-8 conversions. The voltage step after a missed sample is twice normal.
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verter, which was programmed to
make conversions at regular intervals
that had been established by the fre-
quency of the internal clock. The in-
tervals between clock cycles were
decreased in increments of | micro-
second (us) until the A/D failed to

.make a conversion, T detect a failure,

the recorded ramp voltage was out-
put to the oscilloscope using the DIA
routine. A missed sample was recog-
nized as a double step between
voltage levels in the displayed ramp.
as shown by the arrows in figure 2.
This method could also be used to
meastire execution times of routines
by directing the computer to perform
the routines between sampling
periods. A second, more straightfor-
ward, method of measuring execution
times was to use a primitive called
COUNT that returns the value in the
buffer of a specified counter without
influencing the counter's operation.
By setting the counter to count down
from a large number at microsecond
intervals, it was possible to estimate
execution times with a resolution of
1 us. The COUNT routine took 68 pus
+1 ps each time it was called. The ex-

- ecution time of routines inserted be-

tween two calls to the COUNT
routine was therefore calculated by
subtracting 68 us from the measured
interval,

It might be expected that the execu-
tion time for a given routine could be
calculated from the number of clock
cycles required for each instruction in
the routine. In general, the routine
took 30 to 50 percent longer than ex-
pected. A possible explanation for
these longer times has been given in
PC TECH JOURNAL (see reference 2).
Further explanations are beyond the
scope of this article. In addition, the
execution times were somewhat vari-
able. A possible cause of this vari-
ability in timing arises from memory-
refresh cycles that occur at unpredict-
able intervals during program execu-
tion. This variability may cause a
routine to take variable periods of
time, so that variations in execution
times will not occur regularly or pre-
dictably. Thus, it was necessary to
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SALT

measure execution times repetitively
and to estimate an average and a
range of speeds.

FILE AND DATA MANAGEMENT

All data is handled as 2-byte integer
samples. A few primitives operate on
a single number. For example, one
primitive sets a voltage value on one
of the D/A channels and another
records the voltage of a single A/D
channel. Most data is handled as long
arrays. Before such data can be
recorded, a space must be reserved
for it in high memory using the
ADSET routine, as shown in figure 1.
This primitive requires two
parameters to establish the number
of channels and the number of sam-
ples per channel. Once recorded. the
data can be transferred to disk using
the SAVEF primitive, which creates a
disk file using a filename previously
specified as a BASIC string variable.

The first 2 bytes in the file are used
to record the number of samples per
channel. When a file is read from disk
using the LOADF primitive, a buffer
of the correct size is first created in
high memory, and the data is read
into it. To use the recorded data in a
BASIC program, it is necessary to
move the data from its buffer in high
memory to a BASIC integer array (e.g.,
DATAARRAY). This is done with the
FETCH primitive, which requires two
parameters. The first is an integer that
designates the channel number, the
second {e.g., D.N2) is a BASIC variable
that has been set by the BASIC
VARPTR function to the starting ad-
dress of the BASIC array. The BASIC
instruction

D.N2 = VARPTR(DATAARRAY(0))

‘should immediately precedé aCALL

to a secondary containing the FETCH
primitive because BASIC moves its ar-

rays around unpredictably. The
number of the first sample to be
transferred from a channel is placed
in the zero position of the BASIC ar-
ray using a BASIC instruction. Sam-
ples are transferred sequentially until
the defined array is filled or until the
end of the channel is reached. In this
manner, only a portion of a record is
transferred at one time, so that only
a small amount of BASIC array space
need be used. Another instruction
called STORE performs the inverse of
FETCH. It transfers data from a BASIC
array to a previously defined data
space in high memory.

Two additional routines, SAVEF and
LOADF, transfer arrays of data in high
memory to and from disk. The ar-
rangement of data into channels is the
same as that produced by the ADSET
routine (see figure 1).

There is a primitive called SWITCH
that allows the operator to switch be-
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SALT

tween two simultaneously existing
buffers in high memory. Since each
buffer can be as large as 64K bytes,
a total of 128K bytes of high memory
is available. The combination of
ADSET, FETCH., STORE. SAVEF.
LOADF, and SWITCH greatly expand
the amount of space available to
BASIC for handling data. Because
data can be transferred between buf-
fer and disk and then to and from
BASIC, the routines provide BASIC
with a form of virtual memaory.

TIMING

Precise timing is essential in almost
all laboratory applications. Such tim-
ing is made available by a 1-MHz
clock in the timer-counter chip on the
Lab Master board. The basic frequen-
cy can be divided either by powers of
10 or powers of 16. To keep the ap-
plication simple, we have chosen to
use only the decimal divisions. The

divided frequencies are available in
two forms. They can be divided fur-
ther by numbers ranging from 1 to 16
and made available externally as an
“F-out” square wave. We have not yet
found this provision useful and in-
stead have chosen to perform timing
using one of the five counters in the
chip. There were two reasons for this
decision: The F-out pulse is not avail-
able internally to software, and more
importantly, it cannot be synchron-
ized to external events. The 1-MHz
clock and its dividers operate con-
tinuously so that they cannot be syn-
chronized at all. The counter can,
however, be made to begin counting
in synchronization with an externally
applied signal. By counting a large
number of high-frequency pulses, it is
possible to synchronize the counters
to within the limits of the basic fre-
quency. Since the counters can count
to two pulses, it is possible, in princi-

ple. to achieve l-us accuracy of syn-
chronization. In practice, the accuracy
is limited to 3 us because about 3 out
of every 15 us {14 out of every 72
central-processor clock cycles) are
used by the computer for memory
refresh, and it is not possible to con-
trol when the 3-us interruptions will
occur.

The counters on the Lab Master
board are complex and have 18 dif-
ferent modes of operation. Despite
this complexity, the chip containing
the five counters, the 1-MHz frequen-
cy generator, and the frequency
divider is controlled using two 1-byte
ports. While it would be possible to
initialize the counters directly from
BASIC by sending data to the two
control bytes, the complexity of the
timers makes it much easier to use
separate subroutines to establish
each of the modes of operation.

{continued)
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SALT

The complexity of the counters
arises from the combinations of avail-
able functions. Each counter can
count either internal pulses or exter-
nal pulses, each can count repetitive-
ly or give a single count, and each
counter can be gated either internal-
ly or externally. Finaily, each counter
has two 16-bit registers from which it

obtains its count,

In our application the counters are
used for two main purposes. The first
is the timing of D/A and A/D conver-
sion. Since conversions are usually
made at regular intervals, the counters
are usually set to run continuously. In
most cases, the duration of the pulses
is not critical because the digital con-
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versions are triggered on the chang-
ing edge of the counter pulses, so that
only one of the two counter registers
is used at one time to generate the
correct frequency. In one application,
the counter pulses are also applied to
sample-and-hold circuits used to syn-
chronize the conversion. In this case
the pulses from the counter must be
sufficiently long to hold all the exter-
nal circuits in the hold mode until the
analog values are converted. Both
counter registers are used, one to
establish the frequency and the other
to set the pulse duration. In another
application, the two counter registers
are used to establish two separate fre-
quencies, Switching between the two
frequencies is accomplished with
gating pulses applied externally. The
use of these gates eliminates the need
for reprogramming the counters and
thereby hastens program execution.

The second application of the
counters is to control external events
by providing pulses of specified dura-
ticn at specified times. The counter
registers are used to establish pulse
duration as well as the delay between
some initiating event and the onset of
the pulse. The counters can be very
usefu] for this purpose because they
operate independently of the com-
puter’'s central processing unit once
they have been started. This indepen-
dent operation speeds program ex-
ecution greatly.

A/D CONVERSION
The simplest A/D primitives convert
a single analog voitage value on one
A/D channel and place the digitized
integer value in the BASIC variable
space. All the other A/D primitives
make sequential conversions at a fre-
quency determined by a counter on
the timer chip. The principal need for
speed in laboratory applications is in
the rapid accumulation of digitized
data from electrical analog signals.
There are four separate routines for
this purpose and each has separate
advantages with respect to simplici-
ty, speed, and synchronization. All of
the routines have been written in a
way that makes it possible to interrupt
(comtinued)
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rate of conversion. Since the output
is displayed repetitively on an oscil-
loscope, it is important to make this
routine as fast as possible. In addition,
itis highly desirable to have the sam-
ple output rate be a round number of
milliseconds. The DJ/A routines can
operate without failure at 48 us per
conversion and so can be used con-
veniently at 50 us per conversion, At
this rate two channels of 1000 sam-
ples each require 50 milliseconds for
display. The two-channel repetition
rate is thus about 10 per second. The
repetition rate is actually a little lower
because the ocscilloscope reguires a
few milliseconds to reset its beam to

- the beginning of each trace. A repeti-

tion rate of 12 to 18 Hz is not flicker-
free, but is also not too uncomfortable
to scrutinize

DIGITAL I/O PRIMITIVES

The 1/O ports are used in our labora-
tory to transfer 5-volt TTL ({tran-
sistor-transistor logic) pulses between
the computer and cther apparatus.
This transfer of digital signals enables
the computer to control the experi-
ments, or in some cases. to be
directed by external events. Frequent-
ly the digital pulses must be trans-
ferred during other time-critical
operations, such as making rapid A/D
recordings. For this reason, these
routines were made as simple and
therefore as short as possible. As ex-
plained above, this need for simplici-
ty resulted in a large number of very
similar primitives. The simple routines
take about 31 us. If the routine is to
be run during A/D sampling, an addi-
tional 50 us is required to stop and
start the sequential A/D routines.

ARITHMETIC PRIMITIVES
A group of primitives perform simple
arithmetic manipulations on entire
channels of data located in high mem-
ory. The manipulations inciude addi-
tion, subtraction, multiplication, and
division by constants as well as inte-
gration and differentiation. These rou-
tines can be very useful in making
displays, finding maxima, and detect-
ing trends.

{continued)
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SALT

There are a few miscellaneous rou-
tines for operations that could also be
run from BASIC, but which have been
included in SALT so that program
control would not have to return to
BASIC each time they were to be run.
These routines print messages on the
monitor, sound the beeper, etc. They
can be used, for example, to provide

warning sounds and error messages
in SALT.

FUTURE IMPROVEMENTS

This first version of SALT contains all
the necessary routines for interfacing
a computer to laboratory apparatus
and for manipulating blocks of data,
but it contains very little else. It is ob-
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vious that more primitive routines for
data analysis would be useful. and

that the language might be useful cut-

side the lab. Rapid routines for dis-
playing records with cursors on the
displays. finding maxima and minima
in records, etc.. would greatly speed
some types of analysis. High-speed
mathematical routines, such as fast
Fourier transforms, could alsc be ex-
tremely useful in some specialized ap-
plications. Nonlaboratory applications
would include all forms of assembly-
language routines to be run in
baiches under control of an inter-
active higher-level language, such as
BASIC. The use of assembly-language
routines for performing repetitious
procedures and for handling large
blocks of data can greatly hasten pro-
gram execution time and expand the
memory space available to BASIC,
without sacrificing its interactive
qualities. Fortunately, the structure of
the language permits the simple ad-
dition of the necessary primitives,
Once the routine is written, its name,
starting address, and parameter for-
mat are simply added to the tables of
primitives. Since the assembly-lan-
guage routines are short, it will
generally not be necessary to remove
old routines to make room for new
ones. The current version of SALT oc-
cupies about 12K bytes of instruction
space. of which 9K bytes are used for
primitives, As written, the program
can fill up to 64K bytes of higher
memory with assembiy-language pro-
grams, so that the space occupied by
the primitive routines can be ex-
panded over fivefold before economy
of space becomes a consideration.
(Editor's note: You can obtain a copy of SALT
on disk and documentation of its operation
by sending 550 to Sam Femster, 4949 S,
Woodlawn Ave., Chicago, IL 60615.| m
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